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Abstract. The transmission and reflection coefficients of two-dimensional semi-infinite solid-solid phononic
crystal systems and fluid-fluid phononic waveguide structures have been investigated. The numerical results
show that the transmission spectra for longitudinally and transversally polarized incident waves are dif-
ferent, and the spectra of the transmission and reflection coefficients of the semi-infinite system agree well
with the band structure. The numerical results show that when a guided wave incident, localized modes
are excited, and different polarities have different coupling efficiencies with the incident guided wave. At
the same time, far from the cutoff frequency, the guided wave couples out of semi-infinite waveguide highly
efficiently.

PACS. 43.20.+g General linear acoustics – 43.40.+s Structural acoustics and vibration – 46.40.cd Me-
chanical wave propagation (including diffraction, scattering, and dispersion)

1 Introduction

The study of acoustic or elastic wave propagation in one-
dimensional periodic composite materials [1–3] is an old
problem which originates from the description of the prop-
agation of seismic shocks through the Earth’s crust. In
recent years, inspired by the success of studies of pho-
tonic crystals, physicists extended their study from one-
dimensional to two and three dimensional periodic com-
posite materials [4–20]. Periodic composite material is also
called phononic band gap material or phononic crystal.
The key aim behind the proposal of phononic crystals is
the possibility of modifying the propagation of acoustic
or elastic waves by creating phononic band gaps in the
band structure of the synthetic periodic structures, by
analogy with the photonic band gap in periodic dielectric
structures and the electronic band gaps in semiconductor
crystals. Theories show that the large contrast between
the elastic parameters (the mass density and the veloc-
ity) of the scattering and the host material is a neces-
sary condition for the existence of phononic band gaps.
Besides the band gap, the transmission (reflection) spec-
trum also plays an important role in revealing the physical
property of these composite materials. For example, Khe-
lif et al. [17,18] used the FDTD method to calculate the
transmission coefficient and found that the transmission
of elastic waves through the waveguide can be significantly
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altered by incorporating a cavity inside or at the side
of the guide. A different position of the cavity will give
different effects on the transmission behavior. They also
observe that the bend phononic waveguides have a low
loss transmission different from conventional waveguides.
Zhang et al. [21] have demonstrated that negative refrac-
tion of acoustic waves in the 2D phononic crystal exists
in a manner similar to that of photonic crystals from the
transmission spectra. Hou et al. [22,23] have evaluated the
effective velocity of the phononic crystal from the oscilla-
tion period of the transmission and reflection spectra.

The propagation of elastic or acoustic waves in a one-
dimensional semi-infinite periodic composite material and
two-dimensional finite phononic crystals have been exten-
sively investigated as mentioned above. But until now,
to the best of our knowledge, there are no articles de-
voted to the study of elastic (acoustic) wave propagation
in semi-infinite two-dimensional phononic crystals and re-
lated waveguide structures with their surfaces parallelling
to the axes of the rods. Although there are a few studies of
the semi-infinite two-dimensional phononic crystal [24,25],
they focus their attention on the surface wave band struc-
ture, and the surface of these system is perpendicular to
the axes of the rods. A simple case in the present paper
is a plane wave with frequency f and wave vector k0 nor-
mally incidents from the left (homogenous material) to the
semi-infinite phononic crystal along the y axis, the config-
uration of which is schematically depicted in Figure 1a.
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Fig. 1. (a) An external elastic wave propagating from left to right is scattered by a semi-infinite phononic crystal which consists
of square lead rods embedded in an epoxy matrix. (b) The elastic wave propagates from deep inside the semi-infinite phononic
crystal into the host material.

Evidently, the semi-infinite model is different from the
finite-size phononic crystal, due to the fact that it has
only one interface, whilst the finite-size model has two
between the homogenous host material and the phononic
crystal under study. In this case, we would expect very dif-
ferent propagation properties, and the system is worthy
of investigation. A one-dimensional transfer matrix has
been used to investigate the transverse and sagittal elas-
tic waves in the one-dimensional semi-infinite system [2,3],
but it is not possible to solve the two-dimensional sys-
tem in the way because the material is inhomogenous
along the direction perpendicular to the propagation di-
rection in the two-dimensional phononic crystal. For two-
dimensional semi-infinite systems, all the previous studies
have used the plane wave expansion method. It is well-
known that this method is effective for calculating the
band structure, but it is seldom used to calculate the
transmission and reflection coefficients. Recently, we have
developed a new numerical method, improved eigen-mode
matching theory (IEMMT) based on eigen-mode match-
ing theory (EMMT) [23,26,27]. Practice shows that it is
not only a very efficient approach to calculate the trans-
mission and reflection coefficients of finite size phononic
crystals, but can also calculate the band structure of the
infinite phononic crystal. In the present article, we com-
bine the IEMMT method with the Bloch mode expan-
sion method, which has been successfully used in semi-
infinite photonic crystals [28–31], to investigate the elastic
wave propagation properties of the two-dimensional semi-
infinite phononic crystals and related waveguide struc-
tures.

This paper is organized as follows. In Section 2, we
briefly present the main calculation idea of the Bloch mode
expansion method based on the IEMMT method for elas-
tic (acoustic) wave propagation in the two-dimensional
semi-infinite phononic crystal and sandwiched phononic
crystal waveguide structures. The numerical results and
discussion for the two-dimensional semi-infinite phononic
crystal and sandwiched phononic crystal waveguide struc-

tures are presented in Sections 3 and 4, respectively. In
Section 5, A brief summary is given.

2 The formulism for wave propagation
in semi-infinite phononic crystals and related
waveguide structures

Elastic wave propagation in elastic media can be de-
scribed by

ρ
∂2Ui

∂t2
= Tij,i (1)

Tij = CijklUk,l, (2)

where i, j, k, l = 1, 2, 3, respectively, Tij is the stress tensor
component, Ui is the elastic displacement vector, ρ is the
mass density and cijkl is the elastic stiffness.

In the present article, since only elastic waves in the
XY plane are considered, and the elastic materials are
isotropic, equations (1) and (2) can be rewritten as:

−ρω2U1 = (C11U1,1 + C12U2,2),1 + T21,2, (3)

−ρω2U2 = (C44U1,2 + C44U2,1),1 + T22,2, (4)
T21 = C44U1,2 + C44U2,1, (5)
T22 = C12U1,1 + C11U2,2, (6)

where C11 = C12 + 2C44.
Due to the periodic boundary condition along the

x-direction, the plane-wave expansion of equations (3–6)
along the x-direction reads

∑

G′
[−C11G−G′(kx + G)(kx + G′) + ω2ρG−G′]U1Kx+G′ =

βy[
∑

G′
C12(kx + G)U2Kx+G′ − iT21Kx+G], (7)
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∑

G′
[−C44G−G′(kx + G)(kx + G′) + ω2ρG−G′ ]U2Kx+G′ =

βy[
∑

G′
C44(kx + G)U1Kx+G′ − iT22Kx+G], (8)

−
∑

G′
[C44G−G′(kx + G)]U2Kx+G′ − iT21Kx+G =

βy[
∑

G′
C44G−G′U1Kx+G′ ], (9)

−
∑

G′
[C12G−G′(kx + G)]U1Kx+G′ − iT22Kx+G =

βy[
∑

G′
C11G−G′U2Kx+G′ ]. (10)

The above four equations construct the eigen-equations
for βy. After the eigenvalues and the eigenvectors are
solved from the eigen-equations, the wave function can
be written as the follows [23,26].

⎛

⎜⎝

U2

U1

−iT22

−iT21

⎞

⎟⎠ =
N∑

n=1

ejαnx

(
2N∑

r=1

ArLeiβrLy

(
ur

nL
tr
2nL

)

+
2N∑

r=1

ArReiβrRy

(
ur

nR
tr
2nR

))
, (11)

where [ur
n, tr

n]t is the eigenvector associated with eigen-
value βr, and the boundary condition gives

(
U̇+i

iT+i
2

)
=
(

U̇−i+1

iT−i+1
2

)
(12)

where U = (U1, U2)t, iT2 = (iT21, iT22)t, and superscript
+(−) i denotes the right(left) boundary of the ith layer.

With the help of the boundary condition, we can
construct the S-matrix for the unit cell [27]. After the
S-matrix of unit cell is obtained, there exists the relation

(
A+

i

A−
i

)
=
(

I −S12

0 −S22

)−1(
S11 0
S21 −I

)(
A+

i−1

A−
i−1

)

= T

(
A+

i−1

A−
i−1

)
. (13)

Using Bloch theorem, the relationship between the elastic
fields of both sides of the unit cell is

(
A+

i

A−
i

)
= eikyRy

(
A+

i−1

A−
i−1

)
, (14)

where k is the Bloch wave vector and R is the primitive
lattice vector of the phononic crystal. From equations (13)
and (14), we have

T

(
A+

i−1

A−
i−1

)
= eikyRy

(
A+

i−1

A−
i−1

)
, (15)

Equation (15) can be re-written as

TE = EΛ, (16)

where Λ is a diagonal matrix composed of all eigenvalues
(λi, i = 1, 2...N), N is the dimension of T . E is a N ×
N matrix with its ith column being the eigenvector of T
corresponding to the eigenvalue λi. Furthermore, T can
be expressed as T = EΛE−1, putting T into the eigen-
equation

T

(
A+

A−

)
= λ

(
A+

A−

)
, (17)

and after a simple deduction, we have

ΛΣ = λΣ, (18)

where Σ = E−1(A+, A−)T, here “T” denotes the matrix
transposition, A+ and A− are the amplitudes of the elas-
tic field in the layer under study. For a general column
vector Σ = (σi, i = 1, ..., N), in which element σi denotes
an eigen-mode of the transfer matrix T . This equation
Σ = E−1(A+, A−)T is very important in the latter cal-
culation, because it gives the transformation relationship
between the eigen-mode of the original plane-wave basis
and that of the new eigen-state basis. In the new eigen-
state basis, we needs separate the original eigen-mode into
either positive eigen-mode or negative eigen-mode accord-
ing to the corresponding eigenvalue. Similar to the litera-
tures [28,29], when the elastic wave propagates from the
left (host material) to the right (semi-infinite phononic
crystal), we have

E−1

(
A+

0

A−
0

)
=
(

Σ+
0

Σ−
0

)
=
(

Σ+
0
0

)
, (19)

therefor:
A+

0 = E11Σ
+
0 , A−

0 = E21Σ
+
0 . (20)

From equation (20), we obtain

Σ+
0 = E−1

11 A+
0 . (21)

In the case of the elastic wave propagating from the left
(host material) to the right (semi-infinite phononic crys-
tal), A+

0 is a known incident value. So, the reflection field
in the plane wave basis can be written as

A−
0 = E21E

−1
11 A+

0 , (22)

and the transmission field reads

A+
n = E11Σ

+
n , A−

n = E21Σ
+
n , (23)

where Σ+
n can be obtained from the equation

Σ+
n = Λn

+Σ+
0 , Σ−

n = Λn
−Σ−

0 . (24)

Because only the Bloch mode with |λ| = 1 (prop-
agation mode) survives when the elastic wave prop-
agates far from the interface between the host ma-
terial and the phononic crystal, Σ+

n must have the
form as: Σ+

n = [0, ..., 0, (λj)−1(E−1
11 A+

0 )j , 0, ..., 0], where
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λj = exp(ikyRy). In Section 3, we will use the above
theory to perform the numerical calculation of the semi-
infinite phononic crystal under study.

When the elastic wave propagates from deep inside
the phononic crystal to the host material shown in Fig-
ure 1b. The transmission and reflection parameters can be
obtained as follows. From equation

E

(
Σ+

0

Σ−
0

)
=
(

0
A−

0

)
, (25)

where
Σ−

0 = (Λ−)−nΣ−
n (26)

we get the the transmission field

A−
0 = Q−1

22 Σ−
0 , (27)

and finally the reflection field

Σ+
0 = Q12A

−
0 , (28)

Σ+
n = (Λ+)nΣ+

0 , (29)

where Q = E−1. Once Σ+
n has been calculated, the re-

flection field in plane-wave expansion form can be given
by equation (23). Using the above formalism, we can also
calculate the transmission and reflection coefficient of the
inverse process.

In the above, we consider the elastic or acoustic wave
scattering by a simple semi-infinite phononic crystal struc-
ture. Now, we consider a more complex system shown in
Figure 2. The central sandwiched structure is surrounded
by two semi-infinite phononic crystal waveguide struc-
tures, the two semi-infinite waveguide structures have the
same lattice. In this case, using the IMMET method com-
bined with a super-cell approach, we reach the equation:

(
A+

2,0

A−
1,0

)
= SPC2

(
A+

1,0

A−
2,0

)
, (30)

where SPC2 is the S-matrix of the sandwiched part in
Figure 2. From equation (19), we have

A+
2,0 = S11

2 Σ+, A−
2,0 = S21

2 Σ+ (31)

and

A+
1,0 = S11

1 Π+ + S12
1 Π−, A−

1,0 = S21
1 Π+ + S22

1 Π−. (32)

Putting equations (31) and (32) into equation (30), we
obtain
(

S11
2 − S12

PC2S
21
2 −S11

PC2S
12
1

−S22
PC2S

21
2 S22

1 − S21
PC2S

12
1

)(
Σ+

0

Π−
0

)
=

(
S11

PC2S
11
1 Π+

0

(S21
PC2S

11
1 − S21

1 )Π+
0

)
. (33)

We can determine the Σ+
0 and Π−

0 from the above equa-
tion since there exists a relationship Π+

0 = (Λ+)−nΠ+
n ,

where Π+
n is a Bloch mode from well within the PC1

waveguide. Based on equation (19), equation (33) and the
relationship between Π+

n and Π+
0 , we can calculate the

transmission and the reflection coefficients of the system
shown in Figure 2 and other complex sandwiched semi-
infinite waveguide structures.
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Fig. 2. The sandwiched guided structure, PC2 is the cen-
tral sandwiched party, PC1 and PC3 are two semi-infinite
phononic waveguides.

3 Numerical results for wave transmission
and reflection in simple semi-infinite
phononic crystal structures

Based on the calculation method developed above, the
first system to be investigated is a semi-infinite solid-
solid phononic crystal. In the system, the elastic wave
properties is more complicated than that of the pho-
tonic crystal because of the coexistence of longitudinal
and transversal modes. In the studied solid-solid phononic
crystal system, the embedded material is chosen to be
elastic isotropic rectangular lead rods with parameters
ρ = 11.40 × 103 kg/m3, Ct = 860 m/s, Cl = 2160 m/s,
the host material is epoxy with ρ = 1.180 × 103 kg/m3,
Ct = 1157 m/s, Cl = 2535 m/s, and the filling frac-
tion is 0.16 (l/a = 0.2). By using a 21 plane wave basis
and a frequency step of 0.0005(2πCt/a), we calculate the
band structure of the two-dimensional infinite phononic
crystal along the [10] direction, as shown in Figure 3b.
Next, under the assumption that a longitudinally polar-
ized plane wave is normally incident on the semi-infinite
phononic crystal along the [10] direction, we calculate the
corresponding transmission and reflection spectra and dis-
play the numerical results in Figure 3c, where the solid
lines show the transmission coefficient and hollow dot lines
show the reflection coefficient. Furthermore, when the in-
cident wave is the transversally polarized elastic wave, its
transmission and reflection coefficients within the same
system are presented in Figure 3a. It is obvious that the
curves exhibit smoothly varying behavior and there is no
strong oscillations. These phenomena have been well un-
derstood in the context of photonic crystals, and more
generally optics. The transmittance or reflection oscilla-
tion which is evident in a finite structure is the Fabry-
Perot resonances caused by the reflections that occur at
the rear interface of the finite structure. In a semi-infinite
structure, the removal of the back interface eliminates the
resonances. Comparing Figure 3a with Figure 3c, we find
that the transmission spectra have different propagation
behavior when the incident wave is different, for example,
in the frequency range between 0 to 1.0(2πct/a), the trans-
mission spectra of the transversal incident wave have two
band gaps, but for the longitudinal incident wave there is
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Fig. 3. (a) The transmission and reflection spectra of the semi-
infinite solid-solid PhC for a transversal incident wave, where
the solid lines show the transmission coefficient and hollow dot-
ted lines are for the reflection coefficient. (b) The band struc-
ture of the solid-solid PhC the along [10] direction. (c) The
transmission and reflection spectra for a longitudinal elastic
incident wave.

only one gap. On the other hand, the transmission spectra
of both the longitudinal and transversal incident cases also
have some common character. For frequencies below the
first band gap, the transmission coefficient shows a very
simple monotonous decaying behavior, and the reflection
coefficient is increases monotonously. When the frequency
of the incident wave lies within the band gap, the transmis-
sion coefficient is exactly zero and the reflection coefficient
is precisely unity. From the spectra, we also find that the
transmission and reflection spectra agree with the band
structure very well, i.e., the common gap in the transmis-
sion coefficient for both of the longitudinal and transversal
incident cases is exactly the gap of the band structure.

Next, we consider an inverse process, i.e., a Bloch wave
propagates from deep inside the phononic crystal into the
homogenous part along the [10] direction. This process
has been shown in Figure 1b, and the formula to calcu-
late the transmission and reflection coefficient has been
given in Section 2. For this case, we emphasize again
that there only one Bloch mode exists deep inside the
semi-infinite phononic crystal. The numerical results of
the transmission and reflection coefficients are plotted in
Figure 4. Panel (a) of Figure 4 is for the transversally
polarized wave, and panel (b) is for the longitudinally
polarized wave. The solid line indicates the transmission
spectra, and the hollow dot line indicates the reflection
spectra. Because no Bloch modes exist in the band gap,
all the transmission and reflection coefficients are absent
in that region. Comparing Figure 3 with Figure 4, it can
be seen that the spectral curves for the longitudinal wave
and transversal waves are respectively identical to each
other. The reason for this is stated as follows. First, just
as photonic crystal [28], this phononic crystal system also
has time-reversal symmetry. So, there exists an identity
of the transmission coefficient in the two inverse wave

Fig. 4. The transmission and reflection spectra of the Bloch
wave propagating from deep inside the semi-infinite phononic
crystal into the host material as shown in Figure 1b. (a) For
a transversal elastic wave. (b) For a longitudinal elastic wave,
where the solid lines show the transmission coefficient and hol-
low dot lines show the reflection coefficient.

Fig. 5. Different between the transmission coefficient of the
excited wave different and the incident wave, here the incident
wave is (a) a transverse wave, (b) a longitudinal wave.

propagation processes. Secondly, in our calculation, only
zero-order Bragg waves exist in the homogenous material
region, so that when the elastic wave normally incidents
only one Bloch mode can be excited in the phononic crys-
tal. These two points guarantee that both the original and
inverse processes are symmetric when time is reversed.

It is general that the eigenmodes of the phononic crys-
tal are always hybrid in the xy-plane. When the longitu-
dinal or transverse wave is incident on the semi-infinite
phononic crystal, both longitudinal and transverse waves
will be excited. In order to show how the excited waves
differ from the incident wave, we switch off all modes the
same as incident wave by making their amplitude equal
to zero. The numerical results of the coupling are shown
in Figure 5. Panel (a) shows the transmission coefficient
of the longitudinal waves when the transverse wave is in-
cident, and panel (b) shows the coupling of the transverse
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Fig. 6. The transmission and reflection coefficients of the guide wave coupling out of the semi-infinite phononic waveguide.

wave to the incident longitudinal wave. From the figure,
it is found that when the normal incident wave is lon-
gitudinal wave, there is no transverse mode coupling to
the external wave in the low frequency region, and when
the incident wave is transverse, the longitudinal wave is
excited in some low frequency region, but not all low fre-
quency region. This special situation arises due to the nor-
mal incident (k|| = 0), the details of which have been given
in reference [7]. Because there only exists weak coupling
when the wave is normal incident, in the low frequency re-
gion, the longitudinal and transverse vibrations are almost
decoupled from each other along the Gamma-X direction
of the Brillouin zone in the discussion of Figures 3 and 4.

4 Wave transmission and reflection
in semi-infinite phononic crystal waveguide
structures

In the last section, we use the IMMET method com-
bined with the Bloch mode expansion method to study
elastic wave propagation in the simple semi-infinite two
dimensional solid-solid phononic crystal. In this section,
three complex systems will be investigated. The first sys-
tem to be investigated is shown in Figure 6b. The waveg-
uide is created by removing a single row of square rods
along the [10] direction from a semi-infinite fluid-fluid
phononic crystal. In the system, the scatterer is an elas-
tic isotropic square water rod with parameters ρ = 1.0 ×
103 kg/m3, Cl = 1480 m/s, which forms a square lattice,
embedded in the host mercury with ρ = 13.50×103 kg/m3,
Cl = 1450 m/s with filling fraction 0.36 (l/a = 0.3),
where a is the lattice constant, these parameters will be
unchanged in the following section of the paper. In the
numerical calculation 81 plane waves are adopted and 15
unit cells are included in a super-cell. The process of the
guided wave coupling out of the waveguide is also shown
in Figure 6b, the guided mode Σ+ start first in the depth
of the waveguide, then it impinges on the waveguide exit,

some part of the guided mode reflects back and exists as
the negative propagation guide mode in the waveguide, the
other part of the positive guide mode will couple out of the
waveguide in the form of A+. The transmission and reflec-
tion coefficient of the guided mode are shown in Figure 6a,
the result shows that the transmission coefficient almost
monotonously increases until the frequency of the guided
mode exceeds the normalized frequency (0.551ωa/2πct),
and the transmission coefficient is not very high when the
frequency is near the cutoff frequency. This means that
the coupling efficiency varies with the frequency of the in-
cident guided mode, and far from the cutoff frequency, the
guided wave couples out of the waveguide with very high
efficiency.

The second investigated system is shown in the right
panel of Figure 7a, which is a two-dimensional phononic
cavity between two identical semi-infinite phononic waveg-
uides. The two-dimensional phononic cavity is formed by
placing two identical square rods into the waveguide and
keeping a vacant region between the rods. Because the
rods placed into the waveguide are the same as the oth-
ers in the phononic waveguide structure, each wall of the
cavity is one unit-cell thick and the width of the cavity is
one unit-cell wide. Using the formula given in Section 2,
the numerical results are shown in the left panel of Fig-
ure 7a. From the figure, there is only one resonant peak
at the normalized frequency ω0 = 0.514 ω a/2πct, al-
though the frequency of the incident guided mode ranges
from (0.360ωa/2πct) to (0.595ωa/2πct). The resonant fre-
quency is very close to the frequency of the cavity mode,
which is calculated by the plane wave method with 961
plane waves and a 15 × 15 super cell. This agreement
tells us that the transmission peak is induced by the cav-
ity mode coupling with the incident guided wave. Now,
we change the geometrical parameters of the center cav-
ity; the width of the cavity becomes two unit-cells and
the thickness of the wall is still one unit-cell thick. The
changed structure is shown in the right panel of Figure 7b,
the transmission coefficient of the structure is shown in the
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Fig. 7. The transmission and reflection coefficient of the guide wave propagation in the sandwiched phononic waveguide
structures, (a) the width of cavity is one unit-cell wide, (b) the width of cavity is two unit-cells wide.

left panel of Figure 7b. The result shows that there exists
two resonant peaks located at the frequencies ω1 = 0.431
ω a/2πct and ω2 = 0.556 ω a/2πct, respectively. The res-
onant peaks have different amplitudes. The peak corre-
sponding to the resonant frequency ω1 is 0.181, and the
other is 0.994. It has been demonstrated that when the
width of the cavity become two unit-cells wide, the degen-
erate mode will split into two modes, and the two modes
have different polarity [32]. When the guided wave is inci-
dent, the localized mode will be excited, and the different
amplitude resonant peaks mean that the different polarity
has a different coupling efficiency with the incident guided
waves.

5 Brief summary

The transmission and reflection coefficients of the two-
dimensional semi-infinite solid-solid phononic crystal sys-
tem and fluid-fluid phononic waveguide structures have
been investigated. For the solid-solid system, the trans-
mission spectra of longitudinally and transversally polar-
ized incident waves are different, and the spectra of the
transmission and reflection coefficients of the semi-infinite
system agree with the band structure very well. The nu-
merical results also show that the semi-infinite system

eliminates the Fabry-Perot interference peaks in the spec-
tra which have been well understood in the context of
photonic crystals, and more generally optics. Compared
with the propagation behavior of the elastic wave inci-
dent from the host into phononic crystals and the inverse
process, the spectra for these two processes are identi-
cal, which means that the original and inverse processes
are symmetrical when the time is reversed. For the semi-
infinite phononic waveguide, the transmission coefficient
is not very high when the frequency is near to the cutoff
frequency. This means that the coupling efficiency varies
with the frequency of the incident guided mode; far from
the cutoff frequency, the guided wave couples out of the
waveguide with very high efficiency. Finally, more compli-
cated sandwiched waveguide structures have been inves-
tigated. The numerical results show that when the guide
wave is incident, the localized mode will be excited, and
a different polarity has different coupling efficiency with
the incident guided wave.
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